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Summary. The novel generalized correlation of the nuclear spin-spin coupling 
constants with the atomic hybrids and net charges is employed to give a new 
relationship for calculating the directly bonded phosphorus--carbon coupling con- 
stants by use of the maximum bond order hybrid orbital procedure together with 
the extended Hiickel molecular orbital calculation. The calculated coupling con- 
stants of phosphorus-carbon are all in good agreement with the experimental 
data, which shows that the new relationship obtained in the present paper is quite 
satisfactory for calculation of the phosphorus-carbon coupling constants. 
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1. Introduction 

There has been an extensive amount of interest in the measurement and interpre- 
tation of nuclear spin-spin coupling constants between directly bonded atoms 
I-1-20]. Much of this interest has centered upon coupling between carbon and 
another atom, and the proposed relationships between the coupling constants and 
bond hybridization parameters [5]. On the assumption of the dominance of the 
Fermi contact mechanism, such relationships were predicted from the valence 
bond [6, 7] and molecular orbital [7, 8] approximation of Ramsey's formulation 
[13], using the average excitation approximation. It has been shown that such 
relationships are available in the calculation and interpretation of the C-H and 
C-C coupling constants as these couplings are mainly controlled by the Fermi 
contact term [5-12]. For the couplings between phosphorus and another atom, 
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in 1977 Cray and Albright et al. proposed a relationship [21] between the 
1Jp-  x values and s characters of the hybrids: 

JP-x = a(%s)p(%S)x/(1 + S~-x) + b, (1) 

where a and b are constants, (%S)p and (%S)x the percent s-character on phos- 
phorus and atom X, respectively, and Sp_ x the overlap integral for the P - X  bond. 
In many cases, however, these simple concepts fail to rationalize experimental one 
bond P - X  coupling constants [21]. It has been shown that other spin-spin 
coupling mechanisms, i.e. orbital and spin-dipolar terms, may also contribute 
significantly to the coupling constant, particularly to xjp_ c of trivalent phosphorus 
compounds [21]. 

In our preceding paper [22], based on a further theoretical analysis of the 
second-order perturbation formula for the configuration interaction calculation of 
nuclear spin-spin coupling constants derived by Ramsey, a novel generalized 
relationship, which includes the contributions of not only the hybrid orbitals, but 
also the net atomic charges, has been introduced to calculate the coupling 
constants: 

JAB = kAB(%S)A(%S)B + kA(%S)AQA + kB(%s)BQB + /A(%S)A 

+ /B(%S)B + IAB, (2) 

where QA and QB are the net charges of atoms A and B, respectively. The second 
and third terms on the right-hand side of Eq. (2) are the contribution of the ionic 
character of the A-B bond. This novel generalized relationship has been employed 
to elucidate the C-H, C-C, C-N and C-F couplings successfully [22, 23]. These 
satisfactory results inspire us to study the P-C coupling constants by use of the 
novel generalized relationship and the maximum bond order hybrid orbital 
(MBOHO) procedure [24] together with the extended Hfickel molecular orbital 
(EHMO) [25] calculation. 

2. Calculation method 

Let A = (lax>la2> ... lain>) and B = (Ibx)lb2 ... Ib,>) be orthonormal atomic or- 
bital basis sets on atoms A and B. The corresponding two sets of orthonormal 
hybrid orbitals G on atom A and H on atom B are expressed in 

a = A T ,  (3) 

H = BU, (4) 

where T and U are unitary matrices of order m and n, respectively. According to 
the MBOHO method proposed in the previous paper [24], the MBOHOs and the 
corresponding maximum bond orders can be obtained simultaneously from the 
diagonalization of matrix PP+: 

(PP+) T = TM~,  (5) 

where matrix P is the two center part of the density matrix of A and B over the basis 
of the orthonormal atomic orbitals and can be obtained from a molecular orbital 
calculation. Matrix M1 is diagonal, and its diagonal elements are formed from the 
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positive square roots of eigenvalues of matrix PP+. The maximum bond order 
PAB can be evaluated by the formula: 

PAB = Tr M1. (6) 

The detail procedure of the basic MBOHO method was described in the previous 
paper [-24]. 

For a given molecule, before the MBOHO calculation we must determine 
molecular geometry and calculate the corresponding density matrix. As we know, 
the MNDO method presented by Dewar et al. [26] is qualified for geometry 
optimization of the molecules containing phosphorus atom even if the d orbitals 
are not included in the calculation. However, the density matrix obtained from the 
MNDO calculation without d orbitals cannot be used to construct the MBOHOs 
containing hybridization of d orbitals. In this paper, we use the MNDO method to 
optimize geometries of all the molecules studied, and because the d orbitals are not 
involved in our MNDO calculations, the optimized geometries are employed to 
perform the EHMO calculation involving d orbitals of phosphorus. 

To perform the MBOHO procedure on the density matrices obtained from the 
EHMO calculations, one has to obtain a density matrix in an orthogonalized basis. 
Let N be the number of atomic orbitals in a molecule. The standard density matrix 
of order N x N in the non-orthogonalized basis for the molecule is expressed as 
P(N x N). The density matrix P'(N x N) in Lbwdin orthogonalized basis used in 
this work can be written as 

P'(N x N) = S1/z p(N × N)S 1/2. (7) 

Because we use Lbwdin orthogonalized atomic orbital basis, the matrix P in Eq. (5) 
is formed from the submatrix of P'(N x N). 

3. Results and conclusion 

The calculated s-characters of the MBOHOs and the net atomic charges on the 
EHMO level for the phosphorus-carbon single bonds are listed in Table 1. By use 
of the least-squares process, we obtain: 

JP-c = 0.108427 (%s)e (%s)c + 4.6861(%s)pQp. + 12.3901 (%s)cQc 

- 5.4217 (%S)p + 4.2608 (%s)c - 88.61 (Hz) (8) 

with the standard deviation 3.13 Hz. The concrete numerical results are also listed 
in Table 1. 

A survey of the data listed in Table 1 reveals that the calculated phos- 
phorus-carbon coupling constants by using Eq. (8) are all in good agreement 
with the experimental ones. They adequately reflect several important trends, 
e.g. 1Jp_c values in the compounds Et3-,PCln (n = 0 - 2) increase with halogen 
substitution, which is in good agreement with the conclusion obtained by van 
Linthoudt et al. [27], and the negative values of 1Je_c in E t a - ,P ( t -Bu ) ,  
(n = 0 - 3) increase with increasing n because of the widening of the C-P-C bond 
angle [21, 28]. Moreover, from our calculation we can get different 1dp-c values for 
the P-C bonds existing in different chemical environments. This is coincident with 
the chemical intuition. It follows that Eq. (8) obtained in the present report are 
quite satisfactory for calculation of the nuclear spin-spin coupling constants 
between directly bonded phosphorus and carbon atoms in trivalent and pentavalent 
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phosphorus compounds. This satisfactory relationship, Eq. (8), reveals that the 
Fermi contact mechanism plays a key role for the change of 1Jp_c values, and that 
the contribution of the other mechanisms to 1JP-C values, which might be impor- 
tant, may be regarded as a constant included in the constant term,/Pc, of Eq. (2). 
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